Inhalt

Energy efficiency in retrofit
 KNX as an advantage when retrofitting 4

Demand Side Management
 Use solar power instead of paying for peak power 5

Renewable Mobility
 Driving around town with your own solar energy 6

Saving heating energy costs
 Efficient heating with fire and flame 7

Self-sustainable single family house
 Energy management when you’re off-grid 8

Distributed facilities
 A quick check on what’s going on at the office 9

Overall energy management in buildings
 Central control increases hospital efficiency 10
Energy efficiency in retrofit

KNX as an advantage when retrofitting

The challenge
The KNX city is built on solid foundations. That includes not just the trusted KNX system itself, but also the experience gained over the past 20 years of equipping buildings with KNX bus lines, either as part of early automation efforts or as a far-sighted precaution. KNX connects the key technical features in buildings better than any other system. Ingenieurbüro Beyer shows how this trump card can be played to make existing buildings more energy-efficient. The first step is always a detailed consumption survey in order to observe and document the energy consumption.

The solution
The KNX system offers numerous solutions for surveying consumption both centrally and decentrally. As well as single and three-phase KNX energy meters, KNX actuators with current detection and KNX modules with current transformers are also available. Although the measuring accuracy of the latter is not suitable for billing purposes, it is sufficient to give a general idea of the energy consumption in a building. They can be used, particularly in existing distributors, as space-saving replacements for the original actuators, or fitted in sockets.

Practical implementation
The project application uses various different energy meters: KNX meters for overall consumption (Gira), KNX energy actuators (ABB) and actuators with current detection for the consumption in consumer circuits, and a KNX ammeter with current transformer (Zennio) for individual appliances. Additional consumers can be switched on using KNX push buttons.

Functions
All the KNX energy data can be recorded, documented and visually displayed at a central location, as preferred by building operators in real life. The data are then available for processing with Excel or for access by a superordinate energy management system. Charts and graphics can reveal the energy consumption of a building over the course of a day. Individual consumers can be shown if desired, and photographs of distributors in existing buildings provide a convincing argument in favour of retrofitting with KNX measuring equipment and of how easy it is to carry out.

Benefits
• Use of the existing KNX bus line for retrofitting existing buildings with measuring equipment
• Centralised and decentralised energy consumption measurement
• Overview of energy flows for the optimisation of energy consumption
• Historical energy data for monitoring the effectiveness of energy-saving measures
• Database can also be used by other programs
The challenge
It makes sense in economic terms if urban electrical power requirements are matched to the power being generated at the time. The incentive for this is provided by energy supply contracts dependent on peak loads, or ‘differential electricity tariffs’. Intelligent demand side management systems are growing in importance, especially as a way of complying with the conditions of these kinds of contracts and tariffs, particularly as a consequence of the increased contribution by solar and wind power.

The company Gebäude-Programmierer-Service e. K. Helmut Haßenpflug, Frielendorf, shows how commercial consumers can use KNX to avoid expensive peak loads and benefit from low-cost tariffs or even self-generated solar power, taking a canteen kitchen as an example.

The solution
The consumer load consists of two boiling pans of 18 kW each, one tilting fry-top (20 kW), and three steamers (19 kW each). The aim is to control these heavy-duty units so that the total of their individual loads does not exceed a preset value. This set value is represented by energy values valid for 15 minutes at a time. In consultation with the chef, rules are drawn up setting out priorities so that the units can be switched off for short periods without any noticeable effect on performance.

Practical implementation
The electrical consumers are represented by KNX energy meters (Hager, ABB) or an S0 tap on the main meter. As the canteen kitchen units are fitted with potential-free contacts, their contactors can be operated directly by KNX switching actuators. The logic connections are implemented via a KNX visual display. The demand side management system also takes into account the power generated by the installation’s own photovoltaic system (installed power: 30 kWp).

Functions
The demand side management system programmed using KNX software works in a more differentiated way than conventional maximum-value monitoring, and is based on a coordinated set of rules and setpoints. In order to be able to react at an early stage during the 15-minute intervals, the demand side management system continuously calculates the trend in demand. Furthermore, surplus solar power raises the setpoint, so that switch-offs that would have been necessary are avoided and self-generated energy consumption increases. One of the purposes of documentation of demand side management is to provide evidence of any manual intervention in demand side management (override switching) by the chef.

Benefits
• Demand side management integrated in the KNX system
• Prevention of peak loads
• Coordinated switch-off rules
• Increased use of self-generated solar power
• Expandable for tariff management purposes (high and low tariffs)
• Visual displays and documentation

GPS Gebäude-Programmierer-Service e.K. Hallenpflug
Helmut Hallenpflug
Hauptstr. 29
34621 Frielendorf
Phone: +49 (5684) 92 29 57
Fax: +49 (5684) 92 29 58
Mail: gpsolb@aol.com
Renewable Mobility
Driving around town with your own solar energy

The challenge
Electric mobility will play an important part in sustainable cities such as the KNX city. A key aspect of this is that electric vehicles used in private transport will be charged using renewable, carbon-neutral energy. As the timeframe for charging electric cars at charging stations in car parks or garages is usually flexible due to long standing times, the charging operation can be adapted to the building’s own solar collectors or wind turbines. The presentation by Koyne-System-Elektronik, Berlin, shows an intelligent solution to this problem based on KNX.

The solution
The project shows a single family home with its own photovoltaic system, the power from which is both fed into the grid and consumed on site. If a lot of solar power is produced and not much is used in the house itself, it makes sense to charge the electric vehicle using the surplus solar power as far as possible. The KNX system calculates an output target value from the difference between the current grid feed-in and private consumption. This is used for calculating the charging capacity.

Practical implementation
KNX meters (Hager) measure the consumption and generation figures. A KNX weather station (ABB) supplies data on wind, rain and solar radiation. Temperature values are sent to the bus by the KNX analogue input (Jung). The charging post is fitted with a charging control unit (Wago Pilot-Box). This starts and stops the charging process and can automatically set different charging currents (6 A, 10 A, 16 A, 32 A) controlled by KNX. This is regulated using the set value calculated from the energy surplus. The underlying logic is: small surplus = low charging current, large surplus = high charging current. The channels of a KNX actuator drive the potential-free inputs of the Pilot-Box accordingly. The connection to the electric vehicle is via standardised pulse-width communication.

Functions
The particular technical refinement of the presentation is the interface between the electric vehicle and KNX. The charging post is fitted with a charging control unit (Wago Pilot-Box). This starts and stops the charging process and can automatically set different charging currents (6 A, 10 A, 16 A, 32 A) controlled by KNX. This is regulated using the set value calculated from the energy surplus. The underlying logic is: small surplus = low charging current, large surplus = high charging current. The channels of a KNX actuator drive the potential-free inputs of the Pilot-Box accordingly. The connection to the electric vehicle is via standardised pulse-width communication.

Benefits
• Use of carbon-neutral energy for private transport
• Increasing private consumption from solar power
• Solution is simple to implement
• Use of the KNX system which is already installed
• Based on the calculated energy surplus, KNX enables other consumers to be activated, further increasing the amount of power consumed on site.

Renewable Mobility
Driving around town with your own solar energy

The challenge
Electric mobility will play an important part in sustainable cities such as the KNX city. A key aspect of this is that electric vehicles used in private transport will be charged using renewable, carbon-neutral energy. As the timeframe for charging electric cars at charging stations in car parks or garages is usually flexible due to long standing times, the charging operation can be adapted to the building’s own solar collectors or wind turbines. The presentation by Koyne-System-Elektronik, Berlin, shows an intelligent solution to this problem based on KNX.

The solution
The project shows a single family home with its own photovoltaic system, the power from which is both fed into the grid and consumed on site. If a lot of solar power is produced and not much is used in the house itself, it makes sense to charge the electric vehicle using the surplus solar power as far as possible. The KNX system calculates an output target value from the difference between the current grid feed-in and private consumption. This is used for calculating the charging capacity.

Practical implementation
KNX meters (Hager) measure the consumption and generation figures. A KNX weather station (ABB) supplies data on wind, rain and solar radiation. Temperature values are sent to the bus by the KNX analogue input (Jung). The charging post is fitted with a charging control unit (Wago Pilot-Box). This starts and stops the charging process and can automatically set different charging currents (6 A, 10 A, 16 A, 32 A) controlled by KNX. This is regulated using the set value calculated from the energy surplus. The underlying logic is: small surplus = low charging current, large surplus = high charging current. The channels of a KNX actuator drive the potential-free inputs of the Pilot-Box accordingly. The connection to the electric vehicle is via standardised pulse-width communication.

Functions
The particular technical refinement of the presentation is the interface between the electric vehicle and KNX. The charging post is fitted with a charging control unit (Wago Pilot-Box). This starts and stops the charging process and can automatically set different charging currents (6 A, 10 A, 16 A, 32 A) controlled by KNX. This is regulated using the set value calculated from the energy surplus. The underlying logic is: small surplus = low charging current, large surplus = high charging current. The channels of a KNX actuator drive the potential-free inputs of the Pilot-Box accordingly. The connection to the electric vehicle is via standardised pulse-width communication.

Benefits
• Use of carbon-neutral energy for private transport
• Increasing private consumption from solar power
• Solution is simple to implement
• Use of the KNX system which is already installed
• Based on the calculated energy surplus, KNX enables other consumers to be activated, further increasing the amount of power consumed on site.
The challenge
One single system to control all building services and components conveniently, reliably and energy-efficiently: that’s KNX. One of the ways in which the KNX system increases energy efficiency is by making more efficient use of primary energy, thus benefiting the world’s climate, the environment, the purity of the air in our cities, and last but not least the user’s wallet. The project from the engineering company HSEG (Ingenieurbüro für Elektroplanung und Gebäudesystemtechnik Dipl.-Ing. Holger Schult) from Glienicke in Germany shows how KNX individual room control can be retrofitted in order to exercise direct control over the heating gas or oil burner.

The solution
Until now, consumption of primary energy has been regulated entirely by boiler controls, which respond to the outdoor temperature, in contrast to thermostatic valves that respond to the temperature indoors. However, a holistic heating control system will also take into account the current heating requirements for the supply temperature, which will save primary energy. This is achieved by a KNX gateway to the boiler control bus protocol, which creates the necessary link to the heating system. Individual room control can be retrofitted as a wireless system, and linking the valves with window contacts optimises the energy efficiency still further.

Practical implementation
The presentation shows how KNX individual room control can be easily retrofitted via a wireless system (Weinzierl). The connection between KNX and the boiler is provided by an OpenTherm/KNX interface (Theben), allowing the KNX system direct access and regulate the gas flame, control a circulation pump and request information about the boiler temperature. The gas consumption is determined by an S0/KNX converter (Arcus EDS). The existing alarm system can be used to monitor the windows – an example of the synergies offered by the KNX system.

Functions
When heat is requested by a KNX room temperature controller (Gira) connected to the system, the request is transmitted to both the valve actuator and the gas flame. The intensity of the heat supplied is calculated on the basis of a sophisticated logic based on room sizes as a proportion of the overall building surface area, so that the supply temperature is matched exactly to the requirements. Furthermore, timer schedules ensure economical heating by automatically switching the room temperature controller to standby or reducing the temperature at night. A visual display and documentation of the heating control system and current gas consumption in the actual residential building can be consulted to optimise energy-saving efforts.

Benefits
• Energy-efficient heating
• Primary energy savings
• Permanently comfortable heating matched to requirements
• Simple to retrofit
• Continuous monitoring of consumption
• Flexible for further optimisation

Saving heating energy costs
Efficient heating with fire and flame
The challenge

‘Self-sustainable – that’s what we ought to be!’ is the thought running through the mind of many a householder every time the electricity bill comes in. In view of the energy turnaround and its constantly increasing prices, the trend towards energy self-sustainability could be interesting in the sustainable city as well. In remote areas, some buildings already meet all their power needs with self-generated electricity. The presentation by Smart Building Design GmbH from Switzerland shows how KNX can optimise the interplay of energy generation, storage and use.

The solution

The project shows the KNX installation at ‘Finca Los Míticos’ on the holiday island of Mallorca. The 450-square metre property includes a residential house, a guest house and a swimming pool. Electrical energy is generated by a 5.5 kWp photovoltaic plant and a 1.2 kWp wind turbine, and the energy storage unit consists of an 800 Ah/40 V solar battery. If these energy sources are not sufficient, an emergency power generator steps in. Heat for hot water and heating is provided by solar collectors or in an emergency by an oil-fired boiler. The KNX system performs a number of different tasks in order to match the electricity consumption in the building to the availability of electrical energy, and to coordinate the various energy sources with one another.

Practical implementation

The building services have been designed with energy efficiency firmly in mind. For example, the lighting uses power-saving LED technology, and importance is attached to having the highest Energy Label on the domestic electric appliances. The KNX system controls the lighting, solar control components and room temperatures and incorporates energy-saving automatic equipment such as presence detectors. If the electricity supply nonetheless starts to run low, a load-shedding function switches off certain predefined consumers for a brief period.

Functions

The system’s sophisticated technical features also include battery charge monitoring by a KNX analogue input. If the charge drops to a level below 50 percent, KNX starts the generator and switches over the power supply line. Electricity consumption is measured, analysed and visualised by KNX.

KNX sensors (Lingg & Janke) measure the supply and return temperatures and also the temperature in the heat storage unit of the solar and heating system. If the heat hits a minimum level, the oil burner is started. KNX also controls the well pump as a function of the cistern level, and monitors the heating oil tank and the protective circuit breakers.

Benefits

• More economical energy use
• Reliable electricity supply
• Solar, photovoltaic and cistern systems all integrated
• Heating and ventilation performance optimised by KNX
• Visual displays for operation, monitoring and analysis
• High energy efficiency

Self-sustainable single family home

Energy management when you’re off-grid
Distributed facilities

A quick check on what’s going on at the office

The challenge
Is there anyone still in the office? Has anyone remembered to put the alarm on? Employers in particular will appreciate the way that KNX makes it possible to check up on your business premises, turn down the air conditioning or switch the lights on or off, all without leaving your own home. Elektro Wagner GmbH in Wehrheim, Germany, has tackled the issue of networking two sites to permit the operation and monitoring of one building from the other. The project additionally shows how several sites can be incorporated into a single, centralised energy management system, in line with the ‘sustainable city’ concept.

The solution
The sample project is portrayed with the help of two examples, one representing the typical functions of a residential building, the other showing examples of the technology that might be found in a commercial building. All of the functions of the two buildings, for example lighting control, the shading system, home communication, media control and malfunction messages are integrated into a single, completely homogeneous operating concept. The internet is the network used to link the two ‘buildings’.

Practical implementation
Both of these two building installations are based on KNX technology. They are joined by KNX IP via VPN (Gira, with ABB KNX IP routers). The VPN Tunnel ensures that communication between the buildings is adequately protected against unauthorised access.

In the residential building there are local operating keys for light, room temperature control, music and voice (Merten, Jung, Elsner, Arcus-EDS), a video entry phone system (Gira), and a Multiroom system (Trivum). All functions can be viewed on a single visual display (Homeserver), and monitored, controlled and preset via a touchscreen (Gira). This is where all alerts and video footage from the house system are displayed. The ‘commercial building’ demonstrates, for example, how a VdS-certified burglar alarm system can communicate with a KNX installation. The integrated KNX interface links the systems in a completely transparent way, allowing status information to be requested and control room equipment to be operated all via KNX.

Functions
KNX does not only allow the functions of the commercial building to be monitored and controlled from the residential building; conversely, it is also possible to determine from the office whether someone is ringing the doorbell, the heating system is faulty, or the CCTV has been triggered back at home. The convenient ‘talking’ room controllers (Enertex) will be a very popular attraction among visitors to the fair. Not only can they be used to control lighting scenes, multimedia and setpoint temperatures by voice, but they can even answer users’ spoken questions about the statuses of these functions.

Benefits
- Easy monitoring of the building technology in separate buildings from a single location
- Consistent, ergonomic operating concept means two buildings can be operated just as easily as one
- Easy to quickly check operating statuses and remedy faults
- Better monitoring of energy use saves energy and money
- System is easy to modify or add to thanks to KNX technology

Elektro Wagner GmbH
Bertausweg 1
61273 Wehrheim
Phone: +49 (6081) 9525-0
Fax: +49 (6081) 95 25-95
Mail: info@elektro-wagner.com
www.elektro-wagner.com
Overall energy management in buildings
Central control increases hospital efficiency

The challenge
Everything in hospitals in the sustainable city is focused on the treatment and recovery of the patients. This requires the building services to function faultlessly. The sample project by ib company GmbH, Pforzheim, is based on a project that has already been implemented. The task was to network several buildings in an existing hospital complex to permit modern, efficient building control with central energy management. A central control station is required to monitor and operate the technical systems, receive error messages and process energy data. Additional tasks: the room functions also needed to be automated to increase comfort, convenience, safety and security in the wards, and as energy-saving measures.

The solution
The electrical installations in the hospital buildings were fitted with KNX a few years ago. An ideal solution to the task therefore presented itself. The existing KNX-based building services could simply be combined into a single unit using a KNX/IP router (Hager). The central control station for building management now allows visualisation of all the functions in the buildings. The sample project shows in particular the field bus level for regulating the individual room control, lighting control and blind control plus various operating options.

Practical implementation
If KNX is already integrated in the building, then functions can often simply be retrofitted. The KNX individual room control (Gira) was implemented using wireless window handles (EnOcean) and an appropriate KNX Gateway (Wago), without having to lay any cables. This measure helped to avoid heat loss e.g. through open windows. Automatic functions were also integrated for the lighting and solar control. The extensive parameterisation work in the actual project was facilitated by the KNX configurator with automatically generated Group Addresses.

Functions
In addition to wall-mounted push buttons with room temperature control, the tablet attached to the hospital bed allows barrier-free operation of the room functions. Patients have control of the lighting, blinds and room temperature at their fingertips. They can also switch on and select programmes on consumer audio and video devices. In addition the tablet allows communication with the nursing staff via the integrated patient call system. The central functions of the control centre include alarm management. Fault messages are relayed to the relevant service department depending on their type and priority. Centrally compiled energy data including those generated on site are used for monitoring and optimising measures for efficient energy use.

Benefits
- Technical management for efficient building use
- Central energy management
- Fast response to fault messages
- Retrofittable energy-saving measures
- Barrier-free operation from hospital bed
- Comfort, convenience, safety and security for patients

ib company GmbH
Hohenzollernstraße 111
75177 Pforzheim
Phone: +49 7231 3970283-0
Mail: info@ib-company.de
www.ib-company.de

Control technology for distributed properties in hospitals